in the problem of maximizing the plate stiffness.

In conclusion, we note that the Weierstrass-Erdmann condition for the stiffness minimiz-
ation problem will be satisfied on discontinuities of 0¥ (x) while the Weierstrass condition
will not be satified at points x in which 0_<{0*({x) <86,
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ON THE STATE OF STRESS AND STRAIN NEAR CONE APICES*
N.V. MOVCHAN and S.A. NAZAROV

The asymptotic form of the state of stress and strain near the apices of
inclusions or cavities having the form of a pointed cone is investigated.
An arbitrary simple closed contour in a plane bounding a set g of a
small parameter ¢ is the directrix of the conical surface. The principal
term of the asymptotic form A, + 0 () of the stress singularity index is
calculated and examples are considered. The problem of the axisymmetric
strain of an elastic half-space with a thin conical recess is
investigated.

1. A pointed conical inclusion and recess. Let k. denote a thin cone {x & R%: z,>>0,
el X" = g, X' = (7, ,)}, where & 1s a small positive parameter, and g is a domain in the
plane bounded by a simple smooth contour dg. We will consider the cones % and K, == R’ N, e
filled with elastic isotropic materials with Lamé constants A°, p° and A, p, respectively,
and the material contact is ideal (without peeling and slippage). It is known that the
behaviour of the state of stress and strain near a conical point O is governed by the eigen-
numbers and vectors of a certain eigenvalue problem in the domain cut out of the cone by a
unit sphere 5. We introduce spherical coordinates ({p, 6, ¢}, where p=[x], 810, is
the latitude, ¢ &10,2n) is the longitude, and p™Q (8, p, pd /dp, 8/08, 9/3g) will denote the
matrix operator of the Lamé system. We write the stress vector normal to the surface oK,
in an analogous form p7*P (8, ¢, pd/dp, 8/30, 8/dp)u . Here u is the displacement vector. (To
abbreviate the notation, the arguments 8, ¢ and 9/86, /09 will not be indicated everywhere
later.). Let g be the set cut out by the cone % on the sphere S. The problem with the
complex spectrum parameter A {8) has the form

ANy =00n 8§\ g’ 1.1)

®ppikl.Matem. Mekhan. , 54,2,281-293,1990
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C@AE)V=0on g (1.2)
v=v" PA{E)v=P(AE)v on dg’ {1.3)

All the quantities referring to the inclusion % are given the symbol °.

The special vector-functions pA®V (g, 8, ¢, Inp), p*@V°(s, 8, ¢, Inp), occur in the asymp-
totic expansion of the displacements u, u, near the conical point, where V and V° are
polynomials in the variable Inp whose coefficients are the eigenvectors and associated
vectors of problem (1.1}-(1.3) corresponding to the eigenvalue. A (g). We emphasize that the
exact answers {the transcendental equations for the indices) are known only for the axisym-
metric problem in the case of a circular conical inclusion or cavity /1-7/; the transcendental
equation mentioned regquires numerical solution; tables of values of the singularity index can
be found in /1, 4-7/.

We will use the algorithm in /8/ to determine the asymptotic behaviour of several first
positive eigenvalues of problem (1.1)-(1.3) as g—0.

As &-»0 the domain g° vanishes in the limit and problem (1.1)~(1.3) is transformed
into a system of equations on the sphere S without a hole

Q)@ =0 (1.4)

{{1.2) and {1.3) are not taken into account here). It is easy to enumerate all the solutions
of the spectral problem {1.4): the eigennumbers A, are integers, and the vectors @& are
traces on S of homogeneous vector polynomials V(md (m=0,1,2,...,j=1,2,...,3@m-+1)) of
degree m that satisfy the Lame system, or traces of the fields V&9 (9/dx) T (x), where I' is
the Somigliani tensor. Since solutions with a finite elastic energy are considered, only
special solutions in which A (g) > —%, can occur in the asymptotic form., Consequently, we
study perturbations of just the first two eigenvalues A, =0 and A,=1 of system (1.4).
Since the vectors V&» (j=1, 2, 3) correspond to rigid translational displacements, they
satisfy problem {1.1}-(1.3), A{e) =0. The vector polynomials V&» of first degree have
the form

VD (x) = (2, 0, 0), V&R () = (0, 25, 0), VO (x) = (0, 0, z3), 1.5)

V9 (x) = 2% (2, 2y, ), VO (x) = 27 (0, 2y, @), VO (x) =

27V {xg, U, Iy)
V0D (x) = 2% (2, —y, 0), VOO (x) = 27 (0, 24, —7) (1.6)
Va9 (X) = 27 (‘*xﬂr 0, xl)

Egs.(1.1) and (1.2) are true for the traces @)  of the rotations (1.6), which means
that even in this case the eigenvalue A,=1 1is not perturbed. The traces QD (j =1, 2,
..., 6) of the fields (1.5) on the sphere S leave residuals in the conjugate conditions (1.3).
We note that the stresses O = o5 (V&)  are evaluated by the following formulas:

o =2 r 0 =, aemg i T =1, 203 @7

5 (8 G
0(142) = Uea) = 0'13) = VZP"

The components equal to zero are not indicated; analogous expressions hold in the in-
clusions.

Thus, we take the number A, =1 and linear combinations with coefficients ¢; and ¢
{to be determined)

9

N
@0, = "0, ¢), PO, ¢ = j‘%cj"d)‘l'“(e, ) (1.8)

i=1

as the fundamental approximation to the solution of problem {1.1)-{(1.3).

2. Boundary layer near g.’. We introduce the coordinate 1 = (N, My) = 2y 'X’ and the
"expanded" coordinate § =gy in the neighbourhood of the north pole N = (0,0, 1) on the
sphere S. S$ince the vector of the unit normal n on 0dke equals (1 + &% (§-¥)2)™s (vy, vy, —ek+V),
where v (i) is the vector of the internal unit normal to dg in a plane, then the equalities

L)oo T @], = ()@ o (5 )@+ 00) @
B (o) e @), == Bo(35) ¥ ® + Bifs ) ¥®+0 ) 22)
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L (G L) = (b -+ 2u) L -+ ul? Lo (L Go) = Lo (&g L) = (2.3)
4w Gle Lo® (G L) = (0 20) & + ub®
Ly® (&4, Bo) = n (&° + T3, L' (&, & b L) =
L &y, B G G = —(+ ) (867 + B4LEG)
L% &y B boy o) = L% (& & By L) = — *+
Wy (Eilals + Eolo®)s Bo' (& Loy L) =
O+ 2p) viby + wveles Bo® (& G &) =
Wil + 0+ 20 valo, BB G L) =
Wiy 4 pvely, B & Gy L) = pvile +
Woly, BB & Loy L) = 1 (vily + ve00)
B (B By b T = —hvy (Baly + Bl — 1) —
pE-vl;, By (81, Eus Gy Lo) = —pv, (& L+
Bale — 1) — A&vl; f =1, 20 v = (vy (8): v: (B))

hold.
We take the vector sw® (§), ew®® (§) as the principal term of the boundary layer. We

will find the problem that they satisfy. The domain g% S in the coordinates E coincides
with the domain ge R®:.  Consequently, the system of equations for wd) and w°® in R*N\ z
and g are determined, respectively, by using relationships (2.1). In order to derive thé
the relationship (2.2) and the residuals left by the quantities

conjugate condition on dg,
These are calculated

{1.8) in the second of the conditions (1.3) must be taken into account.

using {1.7). We findally obtain the problem

L(4)v0@ =0, teR\E Lo(F)v0@ =0, teg 2.4
B8 75V = B2 (5 5) w0 ®) = — et 2:5)
WOE) = wOE), sed
WO §) = (b + 20— 4 — 28 vy, Ok — A) s, 0)
T @) = (— W) v, (b 2 — 2 — 2w, O)
T @) = (h— K) (v, v, 0), FO (B) = 2% (3 — 1) (o, vy, 0)
(2.6)

YO @) = 2% (u — 1) (0, 0, v), ¥ (&) = 2 (u —
K (0, 0, %)

According to {2.3), the boundary -value problem {2.4) and {2.5) decomposes into two: a
{the

plane problem of elasticity theory (the first line) and a problem of antiplane shear
third 1ine). Since the mean quantities {2.6) in dg equal zero, a solution w( of problem

(2.4} and {2.5) exists that vanishes at infinity.
The following asymptotic formulas hold /9/

WO =TYE+0(E")= Je; 3 "WO@ETE) + 0 (L), @17
[8]—>c0; W@ =(5,0,0), W@ =(0,8,0),
W) =27, £,0), WP®=(0,0,8), W@ =(0,0,8)
T(E) = l1v4; () 5=
iy (8) = Tz (v + 2p)17 (=8, (M + By In | & | +
A+ EEIE 1@ =1 =00 j=1,2
Vag (8) = —(2ap)tIn | §!

o h are expressed in terms of the elastic polarization matrix el-

comprised of factors mpy for Wi (g7 aE) T (§) in the asymptotic
2 of problem (2.4) and (2.5)

The coefficients

ements m = || Mg [l ket
representation of the form (2.7) for the special solutions

with the right sides

(A 2p° — & — 20 vy, (° — M) vy, O, (2 — A7) vy, (2.8)

(A° -+ 2p° — A — 24) vy, 0), 2% (0° — p) (v, vy, 0)
B — w0, 0, vy}, (0° — p) {0, 0, vy)
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We note that the polarization matrix is negative (positive) definite for sufficiently
soft (hard) inclusions of non-zero volume. The above-mentioned connection between o and
mj; is given by the formulas

B =gy =1, % @ = (= )12 (5~ p° A —
WP (mye A+ mog)y o™ = mg, gD =0, =35, 6, k=1,2,3
o0 = ad =0,j =1, 2,3, 4 of V" = 2hmyg, k=4, 5
a4(5) = 2'/9m44, a5(5) - 2‘/4))155

By virtue of (2.7) the components of the vector w( decrease as O (|i[') and this
means the boundary layer ey (0)w! (sly) leaves the residual O (e?) in Egs.(1.1), A {e)= 1.
(Here ¥ 1is a truncating function, x(8) =1 for 8 [0,n/6] and x(8) =0 for 6 [n/3,nl;
it is introduced because the boundary layer is given only in the upper hemisphere). Therefore,
the asymptotic form of the solution of problem (1.1)-(1.3) should be sought in the form

Ae) ~ 1+ ey, v (5, 6, ¢) ~ D (6, 9) + (2.9)
&x (8) Wb (e7m) + @D (5, @) + &% (8) w* (e7n)

We will first determine the second term of the boundary-layer type solution. Taking
account of (2.1), (2.2) and (1.7), we obtain that the vector w® is a solution of the

problem

Low(ﬂ) -+ Llw(l) ={ in R:‘.\g (2‘10)

Lew'® 1 Lew'h =0 ing (.14
8

WO = W, Byw® — Bow®) = Bfw ® — Biw N ;¥ on g (2.12)
i

WY€) = ¥V (E) = (0,0, (1) &%) 213)

WO (&) = (0,0, (b + 24 — A — 2p7) Eov), WO (E) =0
WO (g) = 270, (p — p) &V, 0)
YO () = 2 (u — 1) 59,0, 0)

Let us study the behaviour of the field w®  at infinity.
Proposition 1. Every solution w® of (2.10) allowing the estimate O(1EP) for &&=
(0, 1), has the asymptotic form
wP(E) =T ) +0(% r*; =al(§) + b+ Bp) + 0(EY (2.14)
= (g) = ( (‘-’1 s :2 y 330)

BrE) =x22c gas+fz.a]l§l“z j=1,2

e (E) = (x + 1)1 Zc, (@218 [ - o2 ] + 27alg L, 8 ),
x= (b + 3O+ B (.15)

Proof. By virtue of (2.7) Y® is a homogeneous vector function of degree -1. Since
E-Vy0/08; = 9/0k; | §{0/0 | § | — 0/d%;

then according to (2.3)

Ly (& 0/08) YV = 200wy (0, T, T 1P+
081" =188 @ + O ({8]™

Here and later the subscript k after a comma denotes differentiation with respect to &
Seeking the particular solution of the equation L& = —|§|?8, we arrive at the egualities
(2.15). It remains to note that L,(al +bh =0 for &=0, and the basis for (2.14) follows

from the results in /9, 10/.
The solution of probelm (2.10)-(2.12) is determined to the accuracy of a constant vector,

meaning the column b in {2.14) is arbitrary. Furthermore, it is convenient to consider that
b o= —(In &) 2ap)™ (¢ (¢ + 1)7a, % & + 1)7a,, a3)
For such a selection of b the guantity Y®), written in the coordinates 1 =g§, 1is
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independent of the parameter &. In order to evaluate the column a, we use the method described
in /10/.

Proposition 2. The equalities

8 :
a= B, k=123 B =0+ el (2.16)

Bs® = 4p (A + 3u)la®, p =25, 6 B = (A4 -~ B) (@ +
0, P) + 28,5 [(W — A) A — (A + 2p — A° — 2u°)) X
meszg,j=1,2 3,4 A=R0—A) A +p—2 —

poyt, — (4 p) (207

are valid.

Proof. We multiply system (2.10) and (2.11) scalarly by the unit vectors e, we
integrate by parts in a circle D% of radius R and then we pass to the limit as R — oo,
We have ) ] .
(e Low® 4 LwMyag + (e (Low'® - Lyow' W) ag = @2.17)
Di\e £

6

(o (Bow® + Bow®yar 4 § e 3 e vt Dar 2,

og =1

ap%,

I =pR1 S gjw§1)dz+(p_p°)Swgnvjdt, j=1,2
aD%x %

Iy= 2 {AR 1 g gw(1>dz+(x—x°)s wity dl}

=1 DY

Here B, and B; are operators given by (2.3) with the normal vector v replaced by the
vector (cos @, sin ¢). In order to evaluate the first two integrals on the right-hand side of
(2.17), we note that the first of them equals

S e®). Byal'dl + S ™. (BE 1 B,Y™) dl 1 o (1) (2.18)
op% ap%,
where
S . Beal'dl = — S .28 (§)dt = —ay, S &v,dl = — 8, mesig (2.19)
a
oD%, 0% g

The second integral on the right-hand side of (2.18)is found by direct calculations by
using (2.15), (2.7), and (2.3). When considering the integrals I;, the components of the
normal must be expressed in terms of the vector (B, ——Bo°)§,e(” (Bo—B.,°)§je(” =12 and then
the Betti formula must be used, as well as the asymptotic expansion of the vector w® at
infinity, and a transformation of the type (2.19). We consequently arrive at the relationships
(2.16).

3. Definition of A,. We will now evaluate the quantities @® and A, from the
asymptotic form (2.9). Apart from the smallest terms, the operator Q1+ x-:zA,) is jdentical
with the sum @ (1) + 2%A;Q” (1), where the prime denotes a derivative with respect to ¢ of the
abstract function t— Q (). Moreover, it follows from representation (2.1) that the relation-

ship
Q) =Ly (0/n) + Ly (n, 8/6m) + L, (v, 0/3m) 3.1)

is valid near N.

Here L, is a matrix differential operator in which the coefficients for derivatives or
order k have the order |q | Taking into account the residual O (g?) that appears in
system (1.1) because of the presence of a boundary layer, we conclude that the vector L1 1]
and the number A, satisfy the system

Q)d® = _A,Q (1)@ —Fon S, F = LI + (3.2)
(Q (1) — Lo) yT® + [Ly 4 Ly, X1 ¥® - [Ly, %] T®,
[A, Bl = 4B — BA

Let us study the vector Eq.(3.2)



236
Proposition 3. The system Q 1)V =F, on S is solvable if and only if the equalities
(P Y 7ds —0, j=1.2....,9 (3.3)
5
are valid, where YWH are traces of the fields V&1 (4/6x) 7 (X) on the sphere 5. The sol-

ution V is determined apart from an arbitrary constant column e.

Proposition 4. The following equalities hold:

(YOP.0 () @" D ds = — 8y, ik =1,2,...,9 5.4)
8
SY(IJ)FdS—‘ZMkai i=1.2.....9 3.5)
M, ~=q[——(2—x o — m+ﬁu)+2 2 1yt @l 4 o]
My =g[— o — (2= + B +2 (x+ 1)1 (e +af”))
Msy = —q (x + 1) Bs9, M“. =—q(l — %) a®, j=1,234
Ms, = 27 [(3 + %) @ + (1 — %) P, My, = 29 (3 + (3.6)
%) 4@ + (1 — %) ,P], Mg, = —27q (x + 1) [2 + ™) X

ap® B, My, = 2-q (% 4 1) [(2 + Au™?) o +
BitP], p =5, 6; ¢ = (A + ) [Baup (A + 2p)I7*

Proof. Since the Lamé system operator is formally selfadjoint, then Q* (A) = Q (—1 — A).
Consequently, the first assertion results from the statements about homogeneous solutions of
the Lamé system in Sect.l.

We verify (3.4). Let ! be a function from ¢,*[0,1) that equals one near zero, and let
D} be a sphere of radius d with centre at 0. According to the definition of the Somigliani
tensor, we have

S vt k)<—:T)T(x).L(a—ax'>(§(p)V(l' ) (x)) dx = (3.7}
]
S L) VO ) (x). L( )v“ "’( ? )T(x)dx—-V(‘ ) (a1ox) V¢ (0) = b

3
Dl

On the other hand, since

oo )(po“"’>—po(1+p 35) O, QA+ 1) = Q1) + A (1) + %A%0" (1

the chain of equalities is true that together with (3.7) yield (3.4) and

1
i a LAY Vi ' exe(1, K)
S va. <’5§)T(X)-L(5}‘> © @V ? () ax = hm ; Yot e, 60
Df >
p Fp YOI (8, )0 (1) 91 2 (B, @) —

Ly@.0 (0, )0 (1) O ) (0, ) + -

- hm 1@ YD E, 9@ @) 0h @, g as=— (Y@, )-0'1) 0% 70, 9145
d—0 s

b=}

Q(p_a_\,( (6)p®™: 2 (0, ) dods = Lim S
* az _;
s

Y128, 9) Q" (1) @ P (@, Q)ldods =

It remains to note that the equalities (3.5) are a result of relationships resulting
from {(3.1) and Proposition 3:

8
Q (1) (1 (8) (D (w + ¥® () = F () — x(8) Z ¢ X

<§i—‘l a(nwu) > L B9 4+ d) ) 8 ()

]
dP = — (+ a1 =12, F=5.6 d‘” = — () G+ 207 o +a?),
i=1,2, 3, 4
§ ra 0.0 (1) pr® + 4x®) ds =0

S
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It follows from (3.4) and (3.5) that the conditions (3.3) for the vector Eq.{3.2) with
right-hand side F,=—F - AQ (1)® to be solvable take the form of a system of linear
algebraic equations with a spectral parameter, i.e., A, is an eigenvalue of the matrix ¥
with elements (3.6) while the vector ¢ of the coefficients of linear combinations (1.8) is
the corresponding eigencolumn

Me = A (3.8}

The matrix M has a block configuration. The eigenvectors e, e®, e the unit vectors
in R? and the triple eigennumber A, =0 correspond to the rotations V&%, V&8 VA8 (see
(1.6) and Sect.l). The 4x4 and 2x2 blocks of the matrix M generate two more groups of eigen-
values AN (=1, 2,3,4) and A® (k=35,8).

1°. A thin erack of angular planform. Let the cone K, be formed by removal of the set
(X1 gy = 0, 3322 0, |y | < eay} from the space R’. The corresponding set Z° on the unit sphere S
is the arc of a major circle of length 2arctge. (Note the in substance the requirement of
smoothness of the contour dg was never used.) Two polarization matrix for the crack consists
of the two blocks

n42m) R (GF2pA]
- 2»(l+u)“(x+2p)x (x+zp)a“,’ d“’g(‘“

Substituting the expressions for its elements into (3.6}, we find that

20% L Gph -1 B2

A == Tm o T

AP =0

Moreover, the block of dimensions 4x4 mentioned earlier and its eigennumbers have the
form

Ay Aty — Ay 0
w2t (A2t — (4 2p)is ¢
16 Ay My — My 0

0 0 0 b (A 4 py

H=2p+ 20—, L={C— %A+ 2 -k E=4RF+ P —~2x+ Y
1\2(1) = Az(z) =, Az(a) = =y, Az(” i {4 (?\' + ll)]-,'

We emphasize that the stresses in problems concerning the tension at infinity of a space
with a narrow crack by the forces ¢4, 0," o©r ¢, are constant and therefore have no

singularities. Finally, AM® <0 and A e (=Y, 0), A e (—Ya, —¥).
2°. Let k, be a circular cone {x: z3>0, [x'|<ex}. Then g is a unit circle and the cor-
responding polarization matrix is comprised of blocks

Abpr Atp@—mn Y
Aobp@e—n) A4 px 0

_ nMA+2m
B 0 0 2 (% — 1)

The four eigenvalues of the matrix M are evaluated from the formulas

A,(s) = A‘(4) = p (kb opytoes (=1, 0), A = Ag(‘” = (20 4 Oph -+ 5pd) %
[2 (0 + 200 + 3 = (—15 —5yy)

_ They correspond to non-axisymmetric solutions. The axisymmetric components possess the
singularities A0 - @), 1 =1,2, where

532 -f O of- 28 5 1
AR =g, AQ o . DL TBA RO {m.ﬂ =
% AR mGre ST TR (3.9)

We emphasize that the asymptotic formulas (2.9) and (3.9) obtained concide with the zone
o ~m on thg graph of the numerical solutions {(see /5/, pp.962 and /1/, p.322).

In particular, there results from the formulas presented that under non-axisymmetric
loading the index of the stress singularity can have a higher order than under axisymmetric
loading.

Because of the appearance of an additional large parameter, all the representations
found for the index of the stress singularity lose the asymptotic nature in two cases A > 00
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Or  pf — oo, which corresponds to an incompressible material of the matrix or an absolutely
rigid inclusion. Both limit situations allow investigation within the framework of  the
asymptotic scheme applied in this paper and in /8/, but require separate examination.

4. 4 comnical recess in a half-space. Let k, be a circular cone {x:0<Carcsin 8}. Let us
use the notation: R;® is the half-space {x:z;<C 1}, @ = RP®\ % 1is the half-space with
the conical recess. We examine the problem of the deformation of a body . subjected to

axisymmetric normal loads p and ¢ applied to the surface dQ; near
q the recess edge (Fig.l). We introduce the coordinate Y = (Y Yor ¥a)
in the neighbourhood of the point N, where y;=ezhz;, 7 =1, 2; y; =
p etz — 1), We assume that a force g (e, x) = e%, (r,) acts on the
surface {x:z =1} while a load with intensity p (e, X} = 7% (y,)
acts on ak, (1 RBE. Here ry = (g2 4+ g2V and g4, p, are finite
functions (the case of a concentrated load when p, or g, are pro-
portional to the Dirac §-function is not excluded). After changing
to =0 1in the coordinates y, the neighbourhood of the zone of
force action is transformed into a half-space with a cutout cylinder
€ = D,2 x R, where D?= {{y;, 1) :ry,<<1} is a unit circle.
We assume there are no mass forces, i.e., the displacement vector
u satisfies the homogensous Lamé system. By virtue of axial symmetry,
the problems uy=0 and oy (@) =0 @) =0 ({r, v, 2) are cylindrical
coordinates ¢ € [0, 2m)). The boundary conditions on the surface ok,
and on the boundary of the half-space have the form

Oo (U; X) = — p(g,X), Opp(U;X) = Opg (u;X) = U, xc=dk, [ R? (4.1)

Fig.l
9 (W X) = — q(e, X)) Oor (3 X) = — Gl x) =0, xRS [ Qe (4.2)

The approximate solution of the problem in found in Sects.5 and 6 for small g, where
different asymptotic methods are used; we will clarify the course of the discussion. The
problem for an elastic half-space is the limit problen describing the state of stress and
strain far from the recess. By virtue of the smallness of the zone of application of load
P and ¢, they are here replaced by a concentrated effect. The analysis performed in Sect.5
for the three-dimensional boundary layer that occurs near the zone mentioned shows that in
addition to the concentrated force determined according to the Saint-Venant principle, the
singular solutions of higher order (the derivatives of Somigliani tensor columns) must be
taken into account. According to Sect.2.2 /11/and Chapter 4 /12/, a two-dimensional boundary
layer that is found in the solution of the plane deformation problem occurs near a conical
surface.

5. The limit problem in a half-space with a eylindrical cavity. As already mentioned,
the domain . is transformed into the set R\ C on changing to coordinates y near the
edge of a conical recess. Let I be the operator of the Lame system, and B and I the
operators of the boundary coditions (4.1) and (4.2). In the coordinates y these operators
are split intc formal series in powers of e. The formulas

L(B/0%) ¥ (y) = e 2L (3/09) ¥ () + &7 Ly {y, 9/0N) ¥ (3) +- - - - 6.1)
B (3/3x) ¥ (y) = 7B, (y, 6/0y) ¥ () + By (v, 6/0y)¥ () + . .-

T (9/6x) ¥ (y) =& (a/ﬁy;‘l"(y) 4- T, (y,da/ﬁy) ‘l"(g) o .d
Ly 9p) = = 2L gy + g+ 0) = (i + vz ) 2 () —

Bl(y’%)m __ysgo(y’%, - >——(y1—;;—1 +ay~z(,iy:)80’ (y—%—) — o,
()= o) =l e )

T(0,0, 5o + Ve )i 0D (F5y) = oy (F39) lfin

[ony

are needed later.

The prime here denctes a derivative of the abstract function &/6y; — L (3/8y).

The solution of the initial problem near the point N is sought as the bounary layer
&W° (y) + £W! (y). According to (5.1) and (4.1), (4.2), the vector-function W° is subject

to the equations
L @lay)y W (y) = 0, y=RSN\ G, T (@/ay) W (y) = 0, (5.2)
vy RAN G
B, (y, 8/8y) W° (3) = —po (¥s) (cos 9, sin g, 0), y=dC Ry
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Similar programs were investigated in /13, 14/. Here only axisymmetric solutions occur;
moreover, the asymptotlc form as |y |- o0 is used later to accuracy eo¢{jyj™®. In the
main the soclution W° is represented in the form W°(y) = csT('” W +Fo(lyl™) where TW are
solutions of problems on the action of a concentrated force in the direction e on an
elastic half-space {see /15/, p.237). However, the external forces from {5.2) are self
equilibrated, meaning ¢; == 0. The next of the asymptotic form of the axisymmetric soluti
has the form

Wo(y) = e (70 () + T5 0N + 0Qy[PInjy]h [yf—eo (5-3)

In order to find the dependence of the constant ¢ in (5.3) on the load p we will use
the method of /i0/. We first construct special solutions of the homogeneous problem {5.2)
that have growth at infinity. The residual of the vector V (y) = 27/ (y, ¥, —2h(h + 2u)1y,)
in the homogeneous boundary condition on dC (1R  is «(cos ¢, sing, 0), where a = 2y
(3A + 2}1) {* -+ 2u)7. This error is compensated by the axisymmetric solution a¥ of the

elasticity theory problem for a plane with a cutout unit circle

Ve =020 ny . k=1, 2,Y,(y) =0 (5.4)
Oge (Y; y) = ~—0Orp (Y; y} = ry-Z

Oy (Y} = Grp (Y) == Op; (Y) = Ogz (Y) =0 (5.5)
Since I'(#/0y)Y =0 on 4R2\ € by virtue of (5.5), the vector § ==V -4 a¥ satisfies

the homogeneous problem (5.2).

Proposition 5. The constant ¢; from the asymptotic form (5.3) is calculated from the
formula

Jeme
=2
2.

=
s
S
=
-
(33
<
&

Proof. Let Dgp* be a sphere of radius H with centre at the point y=0. We substitute
the fields W° and § into the Betti formula for the domain (Dg NRAHNC. Taking account of
the boundary conditions on 4Ry we have

(50 (wey—we.a™ @) ds = {g-0™ (W) — we-o™ ) as .7
&y S
ol™ = on, 8, = (6C (\ Ry®) [\ D%, Sy = (D% [} Re®) \ C

SR Y

where n is the external normal. Taking account of the boundary conditions on #C[ RS for
the vector functions W°, § we find that to the left in (5.7) the integral can be extended
to 4G Ry According to {5.3), the right-hand side of (5.7) egquals

e S V) o™ (@P 4+ 79 3)— (7D (v) + TD (7)) 0™ (V; y)} dsy =
DR R

—a {2V Vi, 0/om 08l 1 0)didys = 2,
DptNRS

with error o¢{1) as R - vo.
Passing to the limit as R — o, and evaluating the integral over 4C[ R we obtain
(5.6).

Let us construct the second term of a solution of boundary-layer type. We f£ind by using
{5.1) that the vector W!is determined from the problem

L{(6/oy) Wi(y) = — Ly {y, 3/3y) W°(3), y = RS\ C {5-8)

By, 9/0y) Wi(y) = — By (y, 6/0y) W* (), y = 6C N Rg® {5.9)

U(0/0y) WH(y) = — qy(ry) & — Ty {y, 0/0y) W° (y), y E IRS\C (5.10)

By virtue of (5.3) the right-hand sides of (5.8) and (5.10) are of the order ly1™® and
Iy}, respectively, as |y|— co. Consequently, according to /9, 10, 14/

Wiy =cT® W+ Y +0(y Pyl |y[—o (6.11)

Here ¢y is a certain constant, T is a particular solution of the problem LY = L8
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in R I'f = —I'\E on dR\ 0; and E denotes the expression ¢ (7, + 7,®) from (5.3).
Proposition 6. The factor ¢; in the asymptotic form (5.11) is evaluated from the formula

+o0
g=—21Q —2u(h+ley, Q= gy(t)at (5-12)

1

Formula {5.12) is proved by using the method of /10/; the same calculations are used as
in Proposition 5 as well as the later representation of the vector Y (y):

Proposition 7. The vector function ¥ is determined by the equality Y (y) = y, {y,0/8y, +

¥:9/8y,} 2 {y), and its components are homogeneous functions of degree —1,

6. The asymptotic form of the state of stress and strain in .. Using the asymptotic
expansions (5.3) and (5.11) and returning to the coordinates x and taking account of
Proposition 6, we find that for |x — N | = 0 (¢/)) the following relationship holds:

ETWOY) + e1WI () ~ o7V (x — N) + &0 (T7 (x = N) + 7' (x — N) (6.1)

Merging the three-dimensional boundary layer with the displacement field v that approxi-
mates the solution u far from ke, we conclude that v is a solution of the boundary-value
problem

Lv=0 in R, Tv=ce®8 + ¢; (e® (+ 8 ,) on IR

where e are unit vectors in R® while the 6-function is concentrated at the point x = N.
Therefore, v (Xx) agrees with the right-hand side of the relationship (6.1).

Thus, asymptotic representations of the solution have been found in the following two
zones: in the immediate proximity of the section of the boundary where the external load acts
and far from the cone %,. We will now construct additional terms that take account of the
boundary conditions (4.1) and (4.2} outside the neighbourhood of the point N and the presence
of the boundary singularity at the cone apex.

The vector v leaves the residual

ose (Vi ) = X (p) + O (&), 6pp (V) = vgg (V) = 0 (6.2)

X0 = iy (zser —rw P (i )

in the homogeneous boundary conditions {4.1) on dke {1 R}

In order to eliminate the error (6.2) we construct the boundary layer  ezw (yy, Yo 2). We
emphasize that the quantities (6.2) are characterized by a "slow" dependence on z far from
the point M and therefore, a two-dimensional boundary layer occurs (the extended variable
Yg =& (xg — 1) was used in Sect.5 and the boundary layer was three-dimensional). As in
Sect.2 we obtain that the components of w are solutions of problem on plane and antiplane
deformation of the domain R*\ D, Changing to coordinates (¥, ¥e» 2} in (6.2), we have
Geg {v; 2) = X (2} + O (e). Consequently, the boundary conditions on 8P, for the two-dimen-
sional vector (w,, w,) have the form

o, = —X (2), 0ppg =0 6.3)
This means that w = X (z) Y (y), where Y is the vector of the function (5.4).
According to /9, 10/, the axisymmetric displacement field u allows of the expansion
u(e, ) = ¢ (g) e + ¢ (2) pAMODD e, B, ) + ¢ (6) pA OB (e, 6, @) +. .. (6.%)

in the neighbourhood of the apex of the cone ke
Here ¥ (8) are certain constants. The asymptotic form of the indices A® (g} as
e-—>0 is determined by (2.9) and (3.9) while the angular parts @® have the form

pD™ (0,0, ) = b{" (216 + z,0®) -+ b z,e® {6.5)
5 = B = 1, 5D = 0, bV = —(5A* 4 9pd + 2pH {4 (A +
w) (b 4 27

According to (6.4), (2.9) and (3.9), with the asymptotic representation u (e, x) ~ v (x) +
e2w (Yy, Yoo %) found earlier, we conclude that in (6.4)

e () = (2 + 3p) o (b + W)™ (e — ) + 0 (@) (6.6)
€0 () = (011 (0) B — 035 (O) BO) + O (6}, i, 8] =1, 2
B3 (0) = (2h + p) B ( + W)™ 26y — c3)y Vap (0) = @mp)™ e — ¢o)
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. 1°. According to /7, 1/ and Sect.3 of this paper, the index
sP J of stress singularity at the apex of a conical recess is O (e%).

According to the Novozhilov criterion /16/, such a stress singular-
/ ity may be unimportant exert no influence on the nature of the

i
// 2\ \ fracture, In fact, the condition (mes K)-liu,, (x)ds >0, (for a

5 P
! - \ conical surface K= {p<d, 8=6}) means that
g 025 \ [ Go < 23 (B){sin 8y (2 + €22, - O () exp (2 | In d | (AP L 0N} = 6.7
\ S (By)sin 81 4+ O (2* 1 lnd )
-§ Here = (8, is a certain gquantity evaluated by the formulas

(6.4}, (6.5), and (6.6), and ¢ is a structural parameter /16/ of
Fig.2 the material referred to the distance to the point of load appli-
cation. If the remainder in {6.7) is small compared with the first
term, the presence of the singularity exerts no influence; if
eilndl>1 (because of the smallness of d), then the pressence of the singularity is
decisive.
3°. We will examine the part of the conical surface ok, Dbetween the apex O and the
zone of load action (Fig.l). By virtue of (4.1} and {4.2) and the axial symmetry, only the
stresses o, and o, differ from zero. They are found from (6.2), (6.3) and (5.5) and
mainly (without taking account of the correction terms occurring in the immediate proximity
of the apex (; Sect.l®) are

Gpp = —68 (P); Gpo = 2 (1 — 2v)s {p), v =R I2 (A + w7 6.8)
sE=0@U—pH =P —nT({L =+ - —p7)

Let the forces P and @ be directed within the body (¢,P>0). If QP4 then the
stresses ¢, are tensile and increase monotonically for pe{0, 1) the stresses Ty are
compressive. If QP > 4, then the stresses 0, are compressive in the neighbourhood of
the apex, while o, are tensile. For QP1>(5 —&)(t —v)i=1y, there is a local maximum of
O,y at the point py=[1—3[{1 —¥QP1—2(1 — )| (see Fig.2, where a graph of the function
Pts  ig shown for v=1%, and the parameter ¢@P! equal to 6, 10, 13 {curves 1, 2, 3, re-
spectively); the stresses oy, and o, are evaluated from {6.8)). Therefore, taking
account of the material in Sect.l1°® we conclude that fracture is possible at a distance from
the apex O when & |lnd|<€1; it is characterized by the formation of fine surface cracks
perpendicular to the circle {p=p,, 6 = arcsine}. As the ratio QP increases from the value
Yo, the point p, moves away from the apex O to the boundary of the half-space.

We note that the effect of fracture zone shift from the cone apex was observed in ex-
periments /17/ {see also /18/).

3°, ‘The algorithm elucidated for the asymptotic solution of the problem of the defor -
mation of a half-space with a conical recess also applies in the case of loading from inside
the recess. (We emphasize that in this case the problem from Sect.5 is replaced by an anal-
ogous problem concerning a space with a cylindrical cavity; the computations are simplified
here) . Analysis of the appropriate formulas shows that in the case of such loading the stresses
9y and oy, decrease monotonically from the zone of application of the force p to the cone apex.

4°. The results of Sect.5 show that replacement of external loads distribution in a
small zone by a concentrated force in an elastic half-space is not admissible: expression
(6.1) containing derivatives of Somigliani tensor columns and the vector o T® corresponding
to the problem of a concentrated force are quantities of the same order. However, all the
coefficients of the linear combination are expressed in terms of the principal vectors P and
@ of the external forces (formulas (5.6) and (5.12)).
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ON A CLASS OF EXACT SOLUTIONS OF A NON-AXISYMMETRIC CONTACT PROBLEM
FOR AN INHOMOGENEOUS ELASTIC HALF-SPACE*

A.N. BORODACHEV

A non-axisymmetric mixed boundary-value problem is considered concerning
the pressure (in the absence of friction and adhesion forces) of a stiff
circular-planform stamp with a base of aribitrary shape on an
inhomogeneous elastichalf-space. The shear modulus of the half-space
material is constant while Poisson's ratioc is an arbitrary piecewise-
continuous function of the depth. By using the theory of dual integral
equations associated with the generalized Hankel integral operator, the
problem is reduced to a sequence of one-dimensional Fredholm integral
equations of the second kind.

It is shown that the integral equations obtained allow exact
solutions to be constructed for periodic law of variation of the
half-space material elastic properties with depth. The solution of a
non-axisymmetric problem regarding the eccentric impression of a stamp
with a flat base is presented as a example, on the basis of which the
influence of inhomogeneity of the elastic material on the magnitude of
the stamp displacement parameters is investigated. An  asymptotic
analysis is performed for the solution in the case when the elastic
characteristics of the material become rapidly oscillating functions.
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