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in the problem of maximizing the plate stiffness. 
In conclusion, we note that the Weierstrass-Erdmann condition for the stiffness minimiz- 

ation problem will be satisfied on discontinuities of 8*(x) while the Weierstrass condition 
will not be satified at points x-in which 0-G 8*(x)<8+. 
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ON THE STATE OF STRESS AND STRAIN NEAR CONE API&ES* 

N.V. MOVCHAN and S.A. NAZAROV 

The asymptotic form of the state of stress and strain near the apices of 
inclusions or cavities having the form of a pointed cone is investigated. 
An arbitrary simple closed contour in a plane bounding a set gs of a 
small parameter e is the directrix of the conical surface. The principal 
term of the asymptotic form dA,+0(e3) of the stress singularity index is 
calculated and examples are considered. The problem of the axisymmetric 
strain of an elastic half-space with a thin conical recess is 
investigated. 

2. A pointed corn&t inclusion and recess. Let k, denote a thin cone 
E-‘Z3-‘X’ E g, X’ = (z,, x2)), where E is a small positive parameter, and g 

{E E I%$: r3> 0, 
is a domain in the 

plane bounded by a simple smooth contour $g. We will consider the cones le, and & = R3\,ke 
filled with elastic isotropic materials with Lame constants h",p" and h 
and the material contact is ideal (without peeling and slippage). 

, p, respectively, 
It is known that the 

behaviour of the state of stress and strain near a conical point Ois governed by the eigen- 
numbers and vectors of a certain eigenvalue problem in the domain cut out of the cone by a 
unit sphere S. We introduce spherical coordinates (p, 0, cp), where p = IX I, 0 E lo, 3-d is 
the latitude, g, E ro, 23 
matrix operator of the Lame 

is the longitude, and P-?Q (8, v, pd iap, ~/~8,~/~~) will denote the 
system. We write the stress vector normal to the surface 

in an analogous form p-rP (e, rp, pB/Bp, a/se, a/+)~. 
a& 

Here u is the displacement vector. (To 
abbreviate the notation, the arguments 8, cp and ai%, atarp will not be indicated everywhere 
later.). Let gee be the set cut out by the cone k8 on the sphere S, 
complex spectrum parameter h(e) has the form 

The problem with the 

0 (A (e)) v = 0 on S \ gee WI 
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Q” (A (4) v” = 0 on geD U.2) 
” = v”, P (A fs)) v = P0 (A (E)) v” on ag,o (2.31 

All the quantities referring to the inclusion Iz, are given the symbol *_ 
The special vector-functions p*(QV (E, 0, cp, In p), p'(*)V' (E, 8, cp, In p), occur in the asymp- 

totic expansion of the displacements u, ug near the conical point, where V and V" are 
polynomials in the variable lnp whose coefficients are the eigenvectors and associated 
vectors of problem (l.l)-(1.3) corresponding to the eigenvalue. A(s). We emphasize that the 
exact answers (the transcendental equations for the indices) are known only for the axisym- 
metric problem in the case of a circular conical inclusion or cavity /l-7/; the transcendental 
equation mentioned requires numerical solution; tables of values of the singularity index can 
be found in 11, 4-71. 

We will use the algorithm in /S/ to determine the asymptotic behaviour of several first 
positive eigenvalues of problem (l.l)-(1.3) as E-+0. 

As s-t0 the domain gEo vanishes in the limit and problem (1.1)"(1.3) is transformed 
into a system of equations on the sphere S without a hole 

Q (4 @ = 0 (1 .-f4 
(11.2) and (1.3) are not taken into account here). It is easy to enumerate all the solutions 
of the spectral problem (1.4): the eigennumbers A2, are integers, and the vectors d, are 
traces on S of homogeneous vector polynomials v(m.i) (m-O,1,~,...,j:r1,2,...,3(2m$_1)) of 
degree m that satisfy the Lame system, or traces of the fields Vu,j) (a/ax) T (x), where T is 
the Somigliani tensor. Since solutions with a finite elastic energy are considered, only 
special solutions in which A(s)> --'It can occur in the asymptotic form. Consequently, we 
study perturbations of just the first two eigenvalues A,=0 and h,='l of system (1.4). 
Since the vectors V(0.j) (j = 1, 2, 3) correspond to rigid translational displacements, they 
satisfy problem (l.ll-(1.31, Z%(E)= 0. The vector polynomials vC1.1) of first degree have 
the form 

Eqs.(l.l) and (1.2) are true for the traces @u,j) of the rotations (1.6), which means 
that even in this case the eigenvalue A, = 1 is not perturbed. The traces cP(1vj) (j = 1, 2, 
. . ., 6) of the fields (1.5) on the sphere S leave residuals in the conjugate conditions (1.3). 
We note that the stresses CTI~(') = tm, (V(l*')) are evaluated by the following formulas: 

The components equal to zero are not indicated;analogous expressions hold in the in- 
clusions. 

Thus, we take the number A, = 1 and linear combinations with coefficients cj and cjO 
(to be determined) 

(1.8) 

as the fundamental approximation to the solution of problem (l.l)-(1.3). 

2. E&r~ tiger near gQ. We introduce the coordinate n = (?h, Q) = sz~'x‘ and the 
"expanded" coordinate 3 = e-'n in the neighbourhood of the north pole N = {O,O, 1) on the 
sphere S. Since the vector of the unit normal n on c?k, equals (1 + 9 ($.Y)3)"'. (Yl, vz, --E&V), 
where v(g) is the vector of the internal unit normal to 8g in a plane, then the equalities 
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(2.3) 

hold. 
We take the vector ew@) (g), sw*@) (g) as the principal term of the boundary layer. We 

will find the problem that they satisfy. The domain gSoC S in the coordinates g coincides 
with the domain gr?R%. Consequently, the system of equations for w@) and w'(r) in R2 \ g 
and g are determined, respectively, by using relationships (2.1). In order to derive the 
conjugate condition on ag, the relationship (2.2) and the residuals left by the quantities 
f1.8) in the second of the conditions (1.3) must be taken into account. These are calculated 
using (1.7). We findally obtain the problem 

Lo (-&-) +) (b) = 0, S E R2\g, L: (6) w*(r) (%) = o, g E g (2.4) 

43(%, f) w(l) (%) - H,” (8, &) ~~(1) (F) = _ 2 cjy(j) (6) 

J=l 

According to (2.31, the boundary-valueproblem (2.4) and (2.5) decomposes into two: a 
plane problem of elasticity theory (the first line) and a problem of antiplane shear (the 
third line). Since the mean quantities (2.6) in t3g equal zero, a solution w(') of problem 
(2.4) and (2.5) exists that vanishes at infinity. 

The following asymptotic formulas hold /9/ 

The coefficients 

ements m = II s%R ir: k=‘ 
representation of the 
with the right sides 

Ytj (%I = 14nlr. (A -I- 2r_L)P (G-6ij (h t 3p) In I % / f 
(h + IL) %z%j I % lP)* YSj (6) = yja (E) = 01 i, i = 1, 2 

yss (8 = -(2qP In I s f 

ap are expressed in terms of the elastic polarization matrix el- 

comprised of factors mit for W(~)(~/~~)r(~) in the asymptotic 
form (2.7) for the special solutions Z@) of problem (2.4) and (2.5) 



234 

We note that the polarization matrix is negative (positive) definite for sufficiently 
soft (hard) inclusions of non-zero volume. The above-mentioned connection between C&,(l) and 
miir is given by the formulas 

akOl _= mjr, j z 1, 2; cck@) = (1L - A”) 12 (p - p” i_ h - 

1o)1-1 (mu + rn&, a$*) = rnsPr ax(j) = 0, j = 5, 6, k = 1, 2, 3 
a,(j) = ,Q = 0, j = 1, 2, 3, 4; aikcl) =: 2”:q5, k = 4, 5 

q(6) s 2’l*map, cf_5W = ~Is~,~ 

By virtue of (2.7) the components of the vector $1) decrease as O(j~i-f) and this 
;;ea;z tie boundary layer EX(@)W~ (Al) leaves the residual CJ(E*) in Eqs.(l.l), A (e) = i. 

is a truncating function, x (e) = 1 for e E [O, n/61 and x (0) = 0 for i3 F= bd3,nl; 
it is introduced because the boundary layer is given only in the upper hemisphere)- Therefore, 
the asymptotic form of the solution of problem (l-l)-(1.3) should be sought in the form 

We will first determine the second term of the boundary-layer tYPe solution. Taking 
account of (2.1), (2.2) and (1.71, we obtain that the vector w@) is a solution of the 
problem 

,&+) + &w(r) =U in RS\g (2.10) 
&"~"CZ) t &"w"Cl) = 0 in g (2.fl) 

w(2) = w"(a), BOw@) _ B,"N."W _ B,"W (1) - &w(I) +" -$ cjyl'"." on dg (2.12) 
J=1 

Y(l.1) (%) = W"'(%) = (U,O, (h -- X0) %.v) (2.13) 

Y(“J)(%)= (O,O,(h -i_ 2y -h" - 2$)%.Y)$ Y@.4)(%)= 0 

W6) (%) = 2'!'(0,@ - @)%.v, (I) 

@',6) (%) =r 2'!'[{p - $) %.v, 0, 0) 

Let us study the behaviour of the field WC*) at infinity. 

Proposition 1. Every solution w@) of (2.10) allowing the estimate o( 15 1’) for 6+? 
(O,t), has the asymptotic form 

(2.14) 

a,om =(x + l)-$j @&,~I % I-2 + &QI %I-” + 2”*&‘%&I 1 f-a), 

x = (h + 3Y)(X 4 p)-' (2.15) 

Proof. By virtue of (2.7) r(l) is a homogeneous vector function of degree --2. Since 

g.vsa/ati ---. diakj 1 g 1 ala 15 1 - aiatj 

then according to (2.3) 

Here and later the Subscript k after a comma denotes differentiation with respect to Et. 
Seeking the particular solution of the equation V-2 -Ifl-'e, we arrive at the equalities 

(2.15). It remains to note that L,(aI+b) =: 0 for 5=+0, and the basis for (2.14) follows 
from the results in /9, lo/. 

The solution of probelm (2.10)-(2.12) is determined to the accuracy of a Constant Vector, 

meaning the column b in (2.14) is arbitrary. Furthermore, it is convenient to consider that 

b = -(ln E) (2x&-r (x (X + l)-$, x (X f *)-la,, a3 

For such a selection of b the quantity r(2), written in the coordinates n =a%, is 
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independent of the parameter F. In order to evaluate the column a, we use the method described 
in /lo/. 

Proposition 2. The equalities 

k = 1,2,3; p = 4p(h + 3p)%p (2.16) 

p,(p) = 4p (h + ~~)-Qz,(P), p = 5, 6; pa(j) = (A + B) (c# + 

g,(j)) + 26,, [(h - ho) A - (h + 2p - ko - 2$)1 x 

mesz g, j = 1, 2, 3, 4; A = (h - h") (h + p - ho - 

p")-', B = - (h + p) (h + 3p)-l 

are valid. 

Proof. We multiply system (2.10) and (2.11) scalarly by the unit vectors e"', we 
integrate by parts in a circle 0; of radius R and then we pass to the limit as R-m. 
We have 

s 
e(t). (~,&a) + L,&)) dg + 1 c#. (L,,%‘(~) + L,“w’(~)~ dg = (2.17) 

D;\g g 

S &. (Baw@) f B&'))dZ J- 
aD; 

ds, et'). i cl'k'('~ ‘)dl+Z.I, 

,=I 

I~ = pi-1 S tjwF)dZ + (p-p”) j z#)vjdZ, i = 1, 2 

aD; ae 

Is= i{W 1 $wjl’dZ+(h-A’)~ ~ I w% .dZ } 

j=l aD; a&? 

Here B, and B, are operators given by (2.3) with the normal vector v replaced by the 
vector (co3 'p, sin rp). In order to evaluate the first two integrals on the right-hand side of 
(2.17), we note that the first of them equals 

s e(“. BoardI + s e(').(B,,B + B,r(n) dZ f o(i) (2.18) 
aD”R 8D,“R 

where 

l e(').B,,aIdZ = - 1 e(').a8(g)d:= -'I~. 1 $vkdZ = --t~~~mes& (2.19) 

BDi Di 
ag 

The second integral on the right-hand side of (2.18)is found by direct calculations by 
using (2.15), (2.7), and (2.3). When considering the integrals I,, the components of the 
normal must be expressed in terms of the vector (B, -BB,o)&.(3), (B, -BBpo)E#' (i = i,2) and then 
the Betti formula must be used, as well as the asymptotic expansion of the vector w(r) at 
infinity, and a transformation of the type (2.19). We consequently arrive at the relationships 
(2.16). 

3. Definition of &. We will now evaluate the quantities @(a) and AZ from the 
asymptotic form (2.9). Apart from the smallest terms, 
with the sum Q(i)+ 9&Q'(1), 

the operator Q(1 + e2Az) is identical 
where the prime denotes a derivative with respect to t of the 

abstract function t+Q(t). Moreover, it follows from representation (2.1) that the relation- 
ship 

Q (1) = -L, Wa ) + -b h ahi) + L, (II, alad (3.1) 

is valid near N. 
Here L, is a matrix differential operator in which the coefficients for derivatives or 

order k have the order 19 Ik. Taking into account the residual 
system (1.1) because of the presence of a boundary layer, 

0 (aa) that appears in 
we conclude that the vector @(V 

and the number A, satisfy the system 

Q (1)@(z) = -A,Q' (I)@ -F on S, F = L,@‘) + (3.2) 
(Q (I) - L,) Xr(e) + ~~~ + L,, XI r(l) + [Lo, XI r(z), 

IA, Bl= AB-BA 

Let us study the vector Eq.(3.2) 



236 

Proposition 3. The system Q(l)V = F, on S is solvable if and only if the equalities 

~F,.Y("')du =O, j= I.'....,9 (3.3) 

are valid, where Y(l,j) are traces of the fields V(l,j) (a/ax) T (x) on the sphere S. The sol- 
ution V is determined apart from an arbitrary constant column e. 

Proposition 4. The following equalities hold: 

SY (l~k).q(l)cD(lJ)ds G -ej,, i,k = 2,2,...,9 (:;.q 
5 

Y(',".F ds = i Mlkckr j=1.2....,9 (3.5) 
k-l 

MIj = q[-(2 -x)&)-c@ + &j' + 2(x $ i))'(c$' +&] 

Mzj = Q[- a?) -(2 -x)@ + f3$' + 2 (x f l)-l(a!') +af')] 

M,, = -q (X + 1) pa(j), Maj = -_9 (1 - ~)a$), j = 1, 2, 3, 4 

Mb, = 2-‘/q [(3 + x) a&P) + (1 - x) ~&P’l, Mei, = 2-“‘(1 [(3 + 

x) cc*(P) + (1 - x) pp’], M*:, = -2-“P (x + 1) [(2 + ip-‘) x 
ap + j3p1, M,, = 2-‘/y (x + 1) I(2 + hp-‘) CQJ) + 

~1’p’], p = 5, 6; q = (A. + p) 18ny (h + 2p)1-’ 

(3.6) 

Proof. Since the Lame system operator is formally selfadjoint, then Q+ (A)= Q(-1 - ;r). 

Consequently, the first assertion results from the statements about homogeneous solutions of 

the Lame system in Sect.1. 
We verify (3.4). Let 5 be a function from Corn [0,1) that equals one near zero, and let 

0: be a sphere of radius d with centre at 0. According to the definition of the Somigliani 

tensor, we have 

s v(l* ~)(~)T(x).L(~)(5(p)V(1.~)(x))dx= (Ci.7) 

9 

s 5 cp) ~(1~ j) (x).L (&)v(L k)( &) T (x) dx = V(‘, ‘) (apq V('* >) (0) = ajk 

=: 

On the other hand, since 

Q(P~)(P~(*,~))=PQ(~+P~)~D (I* I), Q (A + *) = Q (1) + AQ’ (1) + ‘/NO” (11 

the chain of equalities is true that together with (3.7) yield (3.4) and 

1 v(~~k)(~)~(x).L(~)(~(p)V(1~~)(x))dx~~~~~~~a~('~k)(~~ P)QX 

9 b 

1 

Q (p -f-j (i (p) p@’ 3, (0, P)) WA = y$ 
i 

Lar,y(L w (0, VP) Q” (1) cpu. 2) (0, ‘p) + +$ 
2 ap 

Y(l, ‘0 (8, cp) Q” (1) O(‘. j)(e, @)&ds = 

-ljtr$(d)SY( 
- 6 

1. a) (fj, cp) Q’ (1) O(‘* 2) (tl, cp) ds = - 1 Y(‘* k)(O, cp).Q’(I) & j)(e, q)ds 
h 

It remains to note that the equalities (3.5) are a result of relationships resulting 

from (3.1) and Proposition 3: 

s r(L k1.q (I)(~+) + xr@)) ds = 0 

Y 
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It follows from (3.4) and (3.5) that the conditions (3.3) for the vector Eq.(3.2) with 
right-hand side F, = - R -&Q'(i)@ to be solvable take the form of a system of linear 

algebraic equations with a spectral parameter, i.e., A, is an eigenvalue of the matrix & 
with elements (3.6) while the vector 0 of the coefficients of linear combinations (1.8) is 
the corresponding eigencolumn 

Me = i&c (3.8) 

The matrix M has a block configuration. The eigenvectors e(T), a(*), eW, the unit vectors 

in R*,and the triple eigennumber A2 = 0 correspond to the rotations V('P'), VP,sI, VW) (see 
(1.6) and Sect.1). The 4x4 and 2x2 blocks of the matrix M generate two more groups of eigen- 
values A,(f) (j = 1, 2,3,4) and &ck) (fc = 5, 6). 

la'. A thin cru& of angu~~ptCtnfOlT?L Let the cone KS be formed by removal of the set 

{x: 4 = 0, 4 2 0, Iq 1 B & from the space R*. The corresponding set &Q on the unit sphere S 
is the arc of a major circle of length Z~ctge. (Note the in substance the requirement of 
smoothness of the contour ag was never used.) Two polarization matrix for the crack consists 
of the two blocks 

Substituting the expressions for its elements into (3.61, we find that 

Moreover, the block of dimensions 4x4 mentioned earlier and its eigennumbers have the 
form 

&al X& - ht, 0 

(h.-!-2p)t, (n.+%-Gti -(h+wta o 

it1 & - 5t, 0 

0 0 0 -4P'(Xi-I+ 

tz = 2p + h(l - xf, f =;(2 - X)(h -I- Zp) -A, f, = 4(X + p) - W(?c + 1) 

A*‘) = Ap = 0, kp = -I/~, h,c*) = ..+ 14 (h + P)l-l 

We emphasize that the stresses in problems concerning the tension at infinity of a space 
with a narrow crack by the forces q?SrnP @iI 

* or m GlS are constant and therefore have no 

singularities. Finally, A*(~) < 0 and AJ') C?s (-%, 01, A,(@ es f--'/a, -Y&. 
20. Let k, be a circular cone {x: So >O, 1 x’ [ < ezs}. Then g is a unit circle and the cor- 

responding polarization matrix is comprised of blocks 

The four eigenvalues of the matrix M are evaluated from the formulas 

a,'" = A,@) = --!J (h -t I")_' Cs (A, O), A,(6) = A,@) = -(2a? + $&A + 5P") x 

12 (k + 2!-W -I- 3flPE (-1; -V& 

They correspond to non-axisymmetric solutions. The axisymmetric components possess the 
singularities @A,@)+ 0 @), i = 1,2, where 

We emphasize that the asymptotic formulas (2.9) and (3.9) obtained concide with the zone 
o-n on the graph of the numerical solutions (see /5/, pp.962 and /I/, p-322). 

In particular, there results from the formulas presented that under non-axisymmetrie 
loading the index of the stress singularity can have a higher ordex than under axisymmetric 
loading. 

Because of the appearance of an additional large parameter, all the representations 
found for the index of the stress singularity lose the asymptotic nature in two cases h-q-~ 
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or pL0,+3, which corresponds to an incompressible material of the matrix or an absolutely 
rigid inclusion. Both limit situations allow investigation within the framework of the 
asymptotic scheme applied in this paper and in 181, but require separate examination. 

4. A conica recess in a hatf-space. Let k8 be a circular cone {x:0< arcsin Ef, Let us 
use the notation: RI3 is the half-space {x:zr3( 11, 52, = RI3 \ & is the half-space with 
the conical recess. We examine the problem of the deformation of a body Q, subjected to 

axisymmetric normal loads p and q applied to the surface 80, near 
the recess edge (Fig.1). We introduce the coordinate Y = (Yr, Ye7 Y3) 
in the neighbourhood of the point N, where -1 -1 yj=E Z .Z,, J=t, 2; y,= 

a-’ (2 - 1). We assume that a force q (E, x) = emapE (rM) acts on the 
surface {x:E = 1) while a load with intensity p (E, x) = E@pO (y,$) 
acts on a&, fl R13. Here rU = (&" + ya2f'lq and qo.PO are finite 
functions (the case of a concentrated load when pO or (lo are pro- 
portional to the Dirac a-function is not excluded). After changing 
to e=O in the coordinates Y, the neighbourhood of the zone of 
force action is transformed into a half-space with a cutout cylinder 
C=O,=xR1r where D,* = {(yl, J%) : r, < 1) is a unit circle. 

We assume there are no mass forces, i.e., the displacement vector 
u satisfies the homogeneous Lame system. By virtue of axial symmetry, 
the problems ncp = 0 and c+(u) = ffqz (u) = 0 ((f, (p, z) are cylindrical 
coordinates cp= IO, zn)). The boundary conditions on the surface ak, 
and on the boundary of the half-space have the form 

Fig.1 
oee(u;x) = - p(E,x), u~B(u;x)= uecp(u;x)= 0, x~ dk, n RI3 ('I.l) 

cr,(u;x)= - u@,x), o,,(u;x)= -u,~(u;K) = O, xfz aR13 [I Q2, (rc.2) 

The approximate solution of the problem in found in Sects.5 and 6 for small E, where 
different asymptotic methods are used; we will clarify the course of the discussion. The 
problem for an elastic half-space is the limit problem describing the state of stress and 
strain far from the recess. By virtue of the smallness of the zone of application of load 
p and q, they are here replaced by a concentrated effect. The analysis performed in Sect.5 
for the three-dimensional boundary layer that occurs near the zone mentioned shows that in 
addition to the concentrated force determined according to the Saint-Venant principle, the 
singular solutions of higher order (the derivatives of Somigliani tensor columns) must be 
taken into account. According to Sect.2.2 ill/and Chapter 4 1121, a two-dimensional boundary 
layer that is found in the solution of the plane deformation problem occurs near a conical 
surface. 

5. The Zwt problem in a ha'lf-space with a cyli?xikieaZ cavity. As already mentioned, 
the domain a, is transformed into the set Ro3 \C on changing to coordinates Y near the 
edge of a conical recess. Let L be the operator of the Lame system, and B and I' the 
operators of the boundary coditions (4.1) and (4.2). In the coordinates Y these operators 
are split into formal series in powers of E. The formulas 

L(d/3x)\P(y)= &-%(a/ay)Ip(Y) + E-%(Y, a/aY)y(Y) -I-. * * (5.1) 

B (d/8X)\Y(Y) = E-q(Y,aPY)y(Y) + B,(Y, 8PY)Y (Y) + ' . * 

r(ajax) Y(~) = er(aja~)y(~) + r,(y,didy)y (Y) -k . . . 

L, (Y’-& ) =--2y,L(~,~.0)-((Y,~.i-iir~)L.(~j- 

(yak + 1) L’ (-&- , & , 0) ; B,(y, &) = cos fp+) -t sin (po@) 

B’(Y,-&)-= -%B*(Y_&, -&,q++ +Yp&)88. (Y&---“9 

I- (6) = (J(3), r,(,,&)=-Y&$-&J)- 

I’(O,O.Y+-Ba 0(j) (UT; Y) = II uJI( (C Y) IL 

are needed later. 
The prime here denotes a derivative of the abstract function a/&,-s L(cVc?yf. 
The solution of the initial problem near the point N is sought as the bounary layer 

s-SW" (y) -I- e-'W' (y). According to (5.1) and (4-l), (4.21, the vector-function Wo is subject 
to the equations 

L (a/ay) w” (y) = 0, Y E ROS\ C, r (d&) \V" (Y) = 0, 

YE dR,$\.C 

(5.2) 

Be (Y? aiay) w* (Y) = -p. (Ye) @OS cp,sin 9, o), Y E ac n R3 
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Similar Programs were investigated in /13, 14/. Here only axisymmetric solutions occur; 
moreover, the asymptotic form as lyl-tm is used later to accuracy 0 ( IY I-% In the 

main the solution W" is represented in the form W'(y) = ~$'(a) (y) + o ( I y 1-l) where T(j) are 

solutions of problems on the action of a concentrated force in the direction e(f) on an 

elastic half-space (see 115/, p.237). However, the external forces from (5.2) are self- 

equilibrated, meaning Cg=-- 0. The next of the asymptotic form of the axisymmetric solution 
has the form 

w"(Y)=C1(~I:'(Y)+T!Z,'(Yj)+O(lYl-31nlY()~ lyl-+m (5.3) 

In order to find the dependence of the constant cl in (5.3) on the load p we will use 
the method of /lo/. We first construct special solutions of the homogeneous problem (5.2) 
that have growth at infinity. The residual of the vector v (Y) = 2-y* (Y** I/e, -2% (h + Zn)-' y,) 
in the homogeneous boundary condition on aCfi Re3 is a (cos (p, sin tp, O), where @, = 2'i"$_& 

(3h + 2P) (h + 2P)-z. This error is compensated by the axisymmetric solution aY of the 
elasticity theory problem for a plane with a cutout unit circle 

I; (y) = (2&' ry-2&$, k = 1, 2; Y, (y) = 0 

cVptp (Y; Y) = --a,, (Y; Y) = rar+ 
(5.4) 

cxz (Y) = OWCY) = +r (Y) = of@(Y) = 0 (5.5) 

Since r (alay) Y = 0 on dRo3 \C by virtue of (5.5), the vector 5 == V -I- aY satisfies 
the homogeneous problem (5.2). 

Proposition 5. The constant c, from the asymptotic form (5.31 is calculated from the 
formula 

Cr = -4n(h + I")@ + Zn)-'P, P = p po(t)dt (5.8) 
-%! 

Proof. Let DRg be a sphere of radius R with centre at the point y=O. We substitute 
the fields W@ and f into the Betti formula for the domain (DRSnR&\C. Taking account of 
the boundary conditions on a&? we have 

S6.0(")(W.)-wO.ofn)(6)ds= ~~.o'"'(w")-ww".o~"~(&)ds (5.7) 
b4 Sr 
u(") = on, S, = (X n RO*) n DR8, S, = (N&s n R$) \ C 

where a is the external normal. Taking account of the boundary conditions on XnRf for 
the vector functions w,t we find that to the left in (5.7) the integral can be extended 
to iX n Reg. According to (5.3), the right-hand side of (5.71 equals 

Cl S iv (y)*ocn) (T!;) f T (‘)’ ,Z' y )-CT!:’ (Y) + T$) (y)).o'"'(V; y)) dsy = 
aD$nR,* 

with error 0 (1) as R-t-. 
Passing to the limit as R-+ca, and evaluating the integral over aC (-) RoS we obtain 

(5.6). 
Let us construct the second term of a solution of boundary-layer type. We find by using 

(5.1) that the vector W'is determined from the problem 

~(~/~Y)W'(Y) = -L,(Y,~/~Y)W"(Y),YFS-R,~\C (5-S) 
&(Y, +?)W'(Y) = - &(Y, VY)~'(Y)>YE SC r‘l R&s 

P(V$) WI(y) = - ale@) - P~(Y, ai*) W'(Y), YE aR,J\C 
(5.9) 
(5.10) 

By virtue of (5.3) the right-hand sides of (5.8) and (5.10) are of the order 1y J-9 and 
IYl-2r respectively, as lyl-tm- Consequently, according to 19, 10, 141 

~(Y)=c,T"'(Y)+r(Y)i~(lYI-e~n'lpI), IYf-+m (5.11) 

Here cQ is a certain constant, r is a particular solution of the problem LL = -.LIS 
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in RoS; I'r = -l?,S on 8R03\ 0; and R denotes the expression cr (T,l(l) f T,z(2)) from (5.3). 

Proposition 6. The factor cI in the asymptotic form (5.11) is evaluated from the formula 

+- 

Formula (5.12) is proved by using the method of /lo/; the same calculations are used as 
in Proposition 5 as well as the later representation of the vector r(y): 

PPoposition 7. The vector function r is determined by the equality r(y) = y, {y,$i& + 
&@@%J R (Y), and its components are homogeneous functions of degree -1, 

6. Z%e nsymptotti fopnr of the state of stress and strain in 9. Using the asymptotic 
expansions (5.3) and (5.11) and returning to the coordinates x and taking account of 
Proposition 6, we find that for Ix -N 1 =O(E%) the following relationship holds: 

'-*W"(y)+ E-'W'(~)-CJ'(~)(X - N)+ c,(Z'!:)(x -N)+ T:;'(x- N)) (6.1) 

Merging the three-dimensional boundary Layer with the displacement field v that approxi- 
mates the solution u far from k,, we conclude that v is a solution of the boundary-value 
problem 

Lv=O in Rr3, l?v = c,e@)S + c, (e(r@,r + e(%,,) on aRIS 

where e(j) are unit vectors in R3 while the h-function is concentrated at the point x = N. 

Therefore, v (x) agrees with the right-hand side of the relationship (6.1). 
Thus, asymptotic representations of the solution have been found in the following two 

zones: in the immediate proximity of the section of the boundary where the external load acts 
and far from the cone k8. We will now construct additional terms that take account of the 
boundary conditions (4.1) and (4.2) outside the neighbourhood of the point N and the presence 
of the boundary singularity at the cone apex. 

The vector v leaves the residual 

oee (v; P) = X (P) + 0 (e), op.9 (v) = o&q (v) = 0 (6.2) 

X(P) = -L(_!L 
a+p 2(i -PP -+i+Z$-+*,, 

in the homogeneous boundary conditions (4.1) on 3kz n RI9 
In order to eliminate the error (6.2) we construct the boundary layer azw (YD Y,, 2). we 

emphasize that the quantities (6.2) are characterized by a "slow" dependence on z far from 
the point B and therefore, a two-dimensional boundary layer occurs (the extended variable 
y, = E-l (X3 - 1) was used in Sect.5 and the boundary layer was three-dimensional). As in 
Sect.2 we obtain that the components of w are solutions of problem on plane and antiplane 
deformation of the domain R2\B1*. Changing to coordinates (&, I&Z) in (6.21, we have 

oee (v; 2) = X (2) + 0 (a). Consequently, the boundary conditions on 8If,' for the two-dimen- 
sional vector (w,,u)~) have the form 

%t = -x (z), O,cp = 0 (6.3) 

This means that w = X (z)Y(y), where Y is the vector of the function (5.4). 
According to /9, lo/, the axisymmetric displacement field u allows of the expansion 

u(e,x) = e@) (e)e@ + ~(l)(s)p"(')(ef~(~)(~, 6,~) + co) &) ~(a~(~)~(~)(~, 8, (p) +. . . 6.4) 

in the neighbourhood of the apex of the cone h% 
Here Cc')(e) are certain constants. The asymptotic form of the indices A(L) (E) as 

E--t0 is determined by (2.9) and (3.9) while the angular parts a(*) have the form 

p@(') (0,0, cp) z bt’ (s,e@) + xze@)) + bf’x,e@) v4 

b,c’) = b,cZ, = P, b,@) = 0, b,c’) = -(5he + 9ph -i_ fy?) [4 (h f 

jL) (A + 2P)l-1 

According to (6.4), (2.9) and (3.91, with the asymptotic representation u (E, x) - v (x) e 

azw (or, Y,, z) found earlier, we conclude that in (6.4) 

c(O) (e) = (2h + 3p) (4np (A +- IL))-1 (CQ - Cl) + 0 (8) (tj.6) 
CC') (E) = -&+a 1 (0) b&j, - u a,s (0) bp) + 0 (4, i f j, i, i = 1, 2 

vi,1 (0) = (2h 5 it fS=p tn + Irr (Zc, - 4, vs,3 (0) = (2m-’ 63 - 4 
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Fig.2 

10. According to 17, l/ and Sect.3 of this paper, the index 
of stress singularity at the apex of a conical recess is 0 (82). 
According to the Novoshilov criterion /lb/, such a stress singular- 
ity may be unimportant exert no influence on the nature of the 

fracture. In fact, the condition (mesK)-1 u*~(x)&> % (for a 

conical surface K= {p<d,B== e,}) means that 

aD < 25 f80)(sin 6,)-l (2 + ES&@) + 0 (&))-1 exp (E* j lad ] (AP + O.(e))) = 
Z (K&in BO)-l + 0 (e* 1 In d 1) 

(6.7) 

Here 9 (5,) is a certain quantity evaluated by the formulas 
(6.41, (6.5), and (b-b), and d is a structural parameter /lb/ of 
the material referred to the distance to the point of load appli- 
cation. If the remainder in (6.7) is small compared with the first 
term, the presence of the singularity exerts no influence; if 

s* ] In d 1’94 (because of the smallness of d), then the pressence of the singularity is 
decisive. 

2". We will examine the part of the conical surface ak, between the apex 0 and the 
zone of load action (Fig.1). By virtue of (4.1) and (4.2) and the axial symmetry, only the 
stresses QP and % differ from zero. They are found from (6.2), (6.3) and (5.5) and 
mainly (without taking account of the correction terms occurring in the immediate proximity 
of the apex 0; Sect-l') are 

opp= -6s (Pk ew = 2 (1 - 2v)s (p), Y = h I2 (X Jr PC 
s(p) = Q (2 (1 - p)B)-" - P (1 -Y)_' ((1 - p)" -t (1 - 2v) (1 - P)") 

(6.8) 

Let the fprces P and Q be directed within the body (Q, P > 0). If QP-'<l then the 
stresses epp are tensile and increase monotonically for p~(O,f); the stresses a* are 
compressive. If QP-'>4 then the stresses am, are compressive in the neighbourhood of 
the apex, while %pe are tensile. For QP+>(5 - C)(1. -v)-I= y. there is a local maximum of 

% at the point p0 = [Z - 3 [(I - v)QP-I- 2 (1 - Zv)l-+ (see Fig.2, where a graph of the function 
p-4 is shown for v=Ya and the parameter QP-x equal to 6, 10, 13 (curves 1, 2, 3, re- 
spectively); the stresses Se and om are evaluated from (6.8)). Therefore, taking 
account of the material in Sect.1" we conclude that fracture is possible at a distance from 
the apex 0 when @Ilnd]<i; it is characterized by the formation of fine surface cracks 
perpendicular to the circle (p= PO,@= arcsine). As the ratio QP-L increases from the value 
Yo, the point p. moves away from the apex 0 to the boundary of the half-space. 

We note that the effect of fracture zone shift from the cone apex was observed in ex- 
periments /17/ (see also /la/). 

3". The algorithm elucidated for the asymptotic solution of the problem of the defor- 
mationof a half-space with a conical recess also applies in the case of loading frominside 
the recess. (We emphasize that in this case the problem from Sect.5 is replaced by an anal- 
ogous problem concerning a space with a cylindrical cavity; the computations are simplified 
here).Analysisof the appropriate formulas shows that in the case of such loading the stresses 
upr, and aq,,decrease monotonically from the zone of application of the force p to the cone apex. 

4". The results of Sect.5 show that replacement of external loads distribution in a 
small zone by a concentrated force in an elastic half-space is not admissible: expression 
(6.1) containing derivatives of Somigliani tensor columns and the vector e,@) corresponding 
to the problem of a concentrated force are quantities of the same order. However, all the 
coefficients of the linear combination are expressed in terms of the principal vectors P and 
Q of the external forces (formulas (5.6) and (5.12)). 
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ON A CLASS OF EXACT SOLUTIONS OF A NON-AXISYMMETRIC CONTACT PROBLEM 

FOR AN INHOMOGENEOUS ELASTIC HALF-SPACE* 

A.N. BORODACHEV 

A non-axisymmetric mixed boundary-value problem is considered concerning 
the pressure (in the absence of friction and adhesion forces) of a stiff 

circular-planform stamp with a base of aribitrary shape on an 

inhomogeneous elastichalf-space. The shear modulus of the half-space 
material is constant while Poisson's ratio is an arbitrary piecewise- 
continuous function of the depth. By using the theory of dual integral 

equations associated with the generalized Hankel integral operator, the 
problem is reduced to a sequence of one-dimensional Fredholm integral 
equations of the second kind. 

It is shown that the integral equations obtained allow exact 

solutions to be constructed for periodic law of variation of the 

half-space material elastic properties with depth. The solution of a 

non-axisymmetric problem regarding the eccentric impression of a stamp 
with a flat base is presented as a example, on the basis of which the 
influence of inhomogeneity of the elastic material on the magnitude of 
the stamp displacement parameters is investigated. An asymptotic 

analysis is performed for the solution in the case when the elastic 
characteristics of the material become rapidly oscillating functions. 


